Note

The enthalpies of combustion and formation of *cis*and *trans*-1-methyl-1,2-dicyclopropylcyclopropane

S.M. Pimenova*, M.P. Kozina and V.P. Kolesov

Chemistry Department, Moscow State University, Moscow 119899 (Russian Federation) (Received 2 September 1992; accepted 30 September 1992)

Abstract

Enthalpies of combustion of *cis*- and *trans*-1-methyl-1,2-dicyclopropylcyclopropane have been measured in a static bomb calorimeter. Enthalpies of formation have been derived for the isomers in the liquid and gaseous states.

INTRODUCTION

The present work is part of a programme of determination of the standard enthalpies of formation of cyclopropane derivatives.

EXPERIMENTAL

Materials

1-Methyl-1,2-dicyclopropylcyclopropane was prepared by the usual method from 5-methyl-3,5-dicyclopropylpyrasoline as a mixture of cis and trans isomers [1]. The isomers were separated chromatographically. The sample of *trans*-1-methyl-1,2-dicyclopropylcyclopropane contained 4.5 mol.% of the cis isomer, as was shown by chromatographic analysis. No impurities were found in the cis isomer.

Apparatus and procedure

The heat of combustion was determined using a static bomb calorimeter. The temperature rise was measured by a copper resistance thermometer $(R \approx 50 \Omega)$ and a bridge circuit [2]. The uncertainty of the temperature measurements was 4×10^{-5} K. The energy equivalent E of the calorimeter

^{*} Corresponding author.

was determined by combustion of thermochemical standard benzoic acid with an energy of combustion of $26434.0 \pm 2.2 \text{ J g}^{-1}$ at 298.15 K. The value of the energy equivalent was equal to $50149.3 \pm 5.0 \text{ J }\Omega^{-1}$. Weighed amounts of the substances were sealed in glass ampoules and placed in a platinum crucible. The bomb with 1 cm³ of added water was charged with purified oxygen to a pressure of 3.0 MPa. Provision for ignition was made using an iron wire heated by the discharge of the capacitor. After each run the combustion products were analysed for CO₂ by the Rossini method [3]. No soot was revealed after combustion experiments. Qualitative tests for CO with indicator tubes were negative within the limits of their sensitivity (0.0001 mol.%).

RESULTS AND DISCUSSION

Results of a typical combustion experiment for each isomer are given in Table 1. The symbols have the following meanings: m, sample mass; ΔR_{corr} , increase of thermometer resistance corrected for heat exchange; $E'\Delta R_{corr}$, the total energy change of the isothermal bomb process at 298.15 K (E' is the energy equivalent taken for the final state of the calorimetric system); q(Fe), the heat of combustion of the iron wire; $q(HNO_3)$, the heat evolved in the formation of nitric acid; $\Delta_B U/M$, the specific energy of combustion at 298.15 K under the bomb conditions n, number of runs. The standard energies of combustion were obtained using the molar mass M = 136.2364 g mol⁻¹ and the Washburn correction 2.5 kJ mol⁻¹.

The values of the standard energy of combustion $\Delta_c U^\circ$ and enthalpy of combustion $\Delta_c H^\circ$, together with the derived enthalpy of formation $\Delta_f H^\circ$ for

Parameter ^a	Isomer			
	Cis	Trans		
m/g	0.28482	0.26191		
$\Delta R_{\rm corr}/\Omega$	0.245806	0.225938		
$E'\Delta R_{\rm corr}/J$	13310.3	12234.7		
$q(\mathrm{Fe})/\mathrm{J}$	34.1	28.9		
$q(HNO_3)/J$	6.5	2.6		
Fraction of CO ₂ found	0.9999	0.9999		
$-\Delta_{\rm B} U/M/({\rm J~g^{-1}})$	46590	46593		
$\langle -\Delta_{\rm B} U/M \rangle / (J g^{-1})$	46599 ± 3^{b}	46583 ± 4 ^b		
n	9	8		

TABLE 1Typical combustion experiment data

^a See text for meaning of symbols.

^b The standard deviation of the mean.

Isomer	$\Delta_e U^{\circ}(1)/kJ mol^{-1}$	$\Delta_{c}H^{\circ}(\mathbf{l})/\mathbf{k}J \operatorname{mol}^{-1}$	$\Delta_{\rm f} H^{\circ}(l)/kJ \ { m mol}^{-1}$	Δ. <i>H</i> °/ kJ mol ⁻¹	$\Delta_{\rm f} H^{\circ}({ m g})/{ m kJ\ mol^{-1}}$
Cis	-6346.0 ± 1.1	-6355.9 ± 1.1	134.1 ± 1.2	46.9	181.0
Trans	-6343.8 ± 1.1	-6353.7 ± 1.1	131.9 ± 1.2	47.3	179.2

Results and derived thermodynamic quantities at 298.15 K ^a

^a See text for meaning of symbols.

the liquid and gaseous states are listed in Table 2. The following key $\Delta_t H^\circ$ values were used in the calculation: $\Delta_t H^\circ(CO_2, g) = -393.51 \pm 0.13 \text{ kJ} \text{ mol}^{-1}$ [4]; $\Delta_t H^\circ(H_2O, l) = -285.830 \pm 0.040 \text{ kJ mol}^{-1}$ [4]. The enthalpy of vaporization $\Delta_v H^\circ$ was estimated according to the Klages equation [5].

The group contribution scheme of Benson et al. [6] gives $178.7 \text{ kJ mol}^{-1}$ for enthalpies of formation of gaseous isomers, which is close to the experimental values. Apparently, no substantial stabilization or strain effect arise between three-membered rings bonded with a single C–C bond. The same conclusion has previously been reached for bicyclopropyl [7].

REFERENCES

TABLE 2

- 1 A.P. Meshcherjakov, V.G. Gluchovzev and A.D. Petrov, Dokl. Akad. Nauk SSSR, 130 (1960) 779.
- 2 S.M. Skuratov and N.N. Goroshko, Izmer. Tekh., 2 (1964) 6.
- 3 F.D. Rossini, in F.D. Rossini (Ed.), Experimental Thermochemistry, Interscience, New York, 1956, p. 59.
- 4 J.D. Cox, D.D. Wagman and V.A. Medvedev, CODATA Key Values for Thermodynamics, Hemisphere, New York, 1989.
- 5 F. Klages, Chem. Ber., 82 (1949) 358.
- 6 S.W. Benson, F.R. Cruickshank, D.M. Golden, G.R. Haugen, H.E. O'Neal, A.S. Rodgers, R. Shaw and R. Walsh, Chem. Rev., 69 (1969) 269.
- 7 A.E. Deezer, W. Lüttke, A. deMeijere and C.T. Mortimer, J. Chem. Soc. B, (1966) 648.